I am trying to do some numpy matrix math because I need to replicate the repmat function from MATLAB. I know there are a thousand examples online, but I cannot seem to get any of them working.
The following is the code I am trying to run:
def getDMap(image, mapSize):
newSize = (float(mapSize[0]) / float(image.shape[1]), float(mapSize[1]) / float(image.shape[0]))
sm = cv.resize(image, (0,0), fx=newSize[0], fy=newSize[1])
for j in range(0, sm.shape[1]):
for i in range(0, sm.shape[0]):
dmap = sm[:,:,:]-np.array([np.tile(sm[j,i,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
return dmap
The function getDMap(image, mapSize) expects an OpenCV2 HSV image as its image argument, which is a numpy array with 3 dimensions: [:,:,:]
. It also expects a tuple with 2 elements as its imSize argument, of course making sure the function passing the arguments takes into account that in numpy arrays the rows and colums are swapped (not: x, y, but: y, x).
newSize then contains a tuple containing fracions that are used to resize the input image to a specific scale, and sm becomes a resized version of the input image. This all works fine.
This is my goal:
The following line:
np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
,
should function equivalent to the MATLAB expression:
repmat(sm(j,i,:),[size(sm,1) size(sm,2)])
,
This is my problem:
Testing this, an OpenCV2 image with dimensions 800x479x3 is passed as the image argument, and (64, 48) (a tuple) is passed as the imSize argument. However when testing this, I get the following ValueError:
dmap = sm[:,:,:]-np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
ValueError: operands could not be broadcast together with shapes (48,64,3) (64,64,192)
So it seems that the array dimensions do not match and numpy has a problem with that. But my question is what? And how do I get this working?
These 2 calculations match:
octave:26> sm=reshape(1:12,2,2,3)
octave:27> x=repmat(sm(1,2,:),[size(sm,1) size(sm,2)])
octave:28> x(:,:,2)
7 7
7 7
In [45]: sm=np.arange(1,13).reshape(2,2,3,order='F')
In [46]: x=np.tile(sm[0,1,:],[sm.shape[0],sm.shape[1],1])
In [47]: x[:,:,1]
Out[47]:
array([[7, 7],
[7, 7]])
This runs:
sm[:,:,:]-np.array([np.tile(sm[0,1,:], (2,2,1)) for k in xrange(3)])
But it produces a (3,2,2,3) array, with replication on the 1st dimension. I don't think you want that k
loop.
What's the intent with?
for i in ...:
for j in ...:
data = ...
You'll only get results from the last iteration. Did you want data += ...
? If so, this might work (for a (N,M,K) shaped sm
)
np.sum(np.array([sm-np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
z = np.array([np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
np.sum(sm - z, axis=0) # let numpy broadcast sm
Actually I don't even need the tile. Let broadcasting do the work:
np.sum(np.array([sm-sm[i,j,:] for i in xrange(N) for j in xrange(M)]),axis=0)
I can get rid of the loops with repeat
.
sm1 = sm.reshape(N*M,L) # combine 1st 2 dim to simplify repeat
z1 = np.repeat(sm1, N*M, axis=0).reshape(N*M,N*M,L)
x1 = np.sum(sm1 - z1, axis=0).reshape(N,M,L)
I can also apply broadcasting to the last case
x4 = np.sum(sm1-sm1[:,None,:], 0).reshape(N,M,L)
# = np.sum(sm1[None,:,:]-sm1[:,None,:], 0).reshape(N,M,L)
With sm
I have to expand (and sum) 2 dimensions:
x5 = np.sum(np.sum(sm[None,:,None,:,:]-sm[:,None,:,None,:],0),1)
len(sm[0])
and len(sm[1])
are not the sizes of the first and second dimensions of sm
. They are the lengths of the first and second row of sm
, and sould both return the same value. You probably want to replace them with sm.shape[0]
and sm.shape[1]
, which are equivalent to your Matlab code, although I am not sure that it will work as you expect it to.
I am trying to do some numpy matrix math because I need to replicate the repmat function from MATLAB. I know there are a thousand examples online, but I cannot seem to get any of them working.
The following is the code I am trying to run:
def getDMap(image, mapSize):
newSize = (float(mapSize[0]) / float(image.shape[1]), float(mapSize[1]) / float(image.shape[0]))
sm = cv.resize(image, (0,0), fx=newSize[0], fy=newSize[1])
for j in range(0, sm.shape[1]):
for i in range(0, sm.shape[0]):
dmap = sm[:,:,:]-np.array([np.tile(sm[j,i,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
return dmap
The function getDMap(image, mapSize) expects an OpenCV2 HSV image as its image argument, which is a numpy array with 3 dimensions: [:,:,:]
. It also expects a tuple with 2 elements as its imSize argument, of course making sure the function passing the arguments takes into account that in numpy arrays the rows and colums are swapped (not: x, y, but: y, x).
newSize then contains a tuple containing fracions that are used to resize the input image to a specific scale, and sm becomes a resized version of the input image. This all works fine.
This is my goal:
The following line:
np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
,
should function equivalent to the MATLAB expression:
repmat(sm(j,i,:),[size(sm,1) size(sm,2)])
,
This is my problem:
Testing this, an OpenCV2 image with dimensions 800x479x3 is passed as the image argument, and (64, 48) (a tuple) is passed as the imSize argument. However when testing this, I get the following ValueError:
dmap = sm[:,:,:]-np.array([np.tile(sm[i,j,:], (len(sm[0]), len(sm[1]))) for k in xrange(len(sm[2]))])
ValueError: operands could not be broadcast together with shapes (48,64,3) (64,64,192)
So it seems that the array dimensions do not match and numpy has a problem with that. But my question is what? And how do I get this working?
These 2 calculations match:
octave:26> sm=reshape(1:12,2,2,3)
octave:27> x=repmat(sm(1,2,:),[size(sm,1) size(sm,2)])
octave:28> x(:,:,2)
7 7
7 7
In [45]: sm=np.arange(1,13).reshape(2,2,3,order='F')
In [46]: x=np.tile(sm[0,1,:],[sm.shape[0],sm.shape[1],1])
In [47]: x[:,:,1]
Out[47]:
array([[7, 7],
[7, 7]])
This runs:
sm[:,:,:]-np.array([np.tile(sm[0,1,:], (2,2,1)) for k in xrange(3)])
But it produces a (3,2,2,3) array, with replication on the 1st dimension. I don't think you want that k
loop.
What's the intent with?
for i in ...:
for j in ...:
data = ...
You'll only get results from the last iteration. Did you want data += ...
? If so, this might work (for a (N,M,K) shaped sm
)
np.sum(np.array([sm-np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
z = np.array([np.tile(sm[i,j,:], (N,M,1)) for i in xrange(N) for j in xrange(M)]),axis=0)
np.sum(sm - z, axis=0) # let numpy broadcast sm
Actually I don't even need the tile. Let broadcasting do the work:
np.sum(np.array([sm-sm[i,j,:] for i in xrange(N) for j in xrange(M)]),axis=0)
I can get rid of the loops with repeat
.
sm1 = sm.reshape(N*M,L) # combine 1st 2 dim to simplify repeat
z1 = np.repeat(sm1, N*M, axis=0).reshape(N*M,N*M,L)
x1 = np.sum(sm1 - z1, axis=0).reshape(N,M,L)
I can also apply broadcasting to the last case
x4 = np.sum(sm1-sm1[:,None,:], 0).reshape(N,M,L)
# = np.sum(sm1[None,:,:]-sm1[:,None,:], 0).reshape(N,M,L)
With sm
I have to expand (and sum) 2 dimensions:
x5 = np.sum(np.sum(sm[None,:,None,:,:]-sm[:,None,:,None,:],0),1)
len(sm[0])
and len(sm[1])
are not the sizes of the first and second dimensions of sm
. They are the lengths of the first and second row of sm
, and sould both return the same value. You probably want to replace them with sm.shape[0]
and sm.shape[1]
, which are equivalent to your Matlab code, although I am not sure that it will work as you expect it to.
0 commentaires:
Enregistrer un commentaire